Human Metapneumovirus MyBiosource.com Nucleoprotein gene 150 tests For general laboratory and research use only # Introduction to Human Metapneumovirus Human metapneumovirus (hMPV) was isolated for the first time in 2001 in the Netherlands by using the RAP-PCR technique for identification of unknown viruses growing in cultured cells. hMPV is a negative single-stranded RNA virus of the family Paramyxoviridae and is closely related to the avian metapneumovirus (AMPV) subgroup C. It may be the second most common cause (after the respiratory syncytial virus) of lower respiratory infection in young children. Compared with respiratory syncytial virus, infection with human metapneumovirus tends to occur in slightly older children and to produce disease that is less severe. Co-infection with both viruses can occur, and is generally associated with worse disease. Human metapneumovirus accounts for approximately 10% of respiratory tract infections that are not related to previously known etiologic agents. The virus seems to be distributed worldwide and to have a seasonal distribution with its incidence comparable to that for the influenza viruses during winter. Serologic studies have shown that by the age of five, virtually all children have been exposed to the virus and reinfections appear to be common. Human metapneumovirus may cause mild respiratory tract infection however small children, elderly and immunocompromised individuals are at risk of severe disease and hospitalization. NABIO SOUTH # Specificity The Kit for Human Metapneumovirus (HMPV) genomes is designed for the in vitro quantification of HMPV genomes. The kit is designed to have the broadest detection profile possible whilst remaining specific to the HMPV genome. The primers and probe sequences in this kit have 100% homology with a broad range of HMPV sequences based on a comprehensive bioinformatics analysis. The primers have 100% homology with all reference sequences in the NCBI database and therefore have a very broadest quantification profile. However, due to the inherent instability of RNA viral genomes, it is not possible guarantee quantification of all clinical isolates. AnyBioSource. Coffi ### Kit Contents - HMPV specific primer/probe mix (150 reactions BROWN) FAM labelled - HMPV positive control template (for Standard curve RED) - HMPV RT primer mix (150 reactions GREEN) Required for two step protocol only - RNAse/DNAse free water (WHITE) for resuspension of primer/probe mixes - Template preparation buffer (YELLOW) for resuspension of positive control template and standard curve preparation # Reagents and equipment to be supplied by the user #### **Real-Time PCR Instrument** #### **RNA** extraction kit This kit is recommended for use with Easy DNA/RNA Extraction kit. However, it is designed to work well with all processes that yield high quality RNA with minimal PCR inhibitors. oasig[™] Lyophilised OneStep or Precision[™] OneStepPLUS 2x qRT-PCR Mastermix Contains complete one step qRT-PCR Mastermix **Pipettors and Tips** Vortex and centrifuge Thin walled 1.5 ml PCR reaction tubes # Kit storage and stability This kit is stable at room temperature but should be stored at -20°C on arrival. Once the lyophilised components have been resuspended they should not be exposed to temperatures above -20°C for longer than 30 minutes at a time and unnecessary repeated freeze/thawing should be avoided. The kit is stable for six months from the date of resuspension under these circumstances. If a standard curve dilution series is prepared this can be stored frozen for an extended period. If you see any degradation in this serial dilution a fresh standard curve can be prepared from the positive control. We do not recommend using the kit after the expiry date stated on the pack. ## Suitable sample material All kinds of sample material suited for PCR amplification can be used. Please ensure the samples are suitable in terms of purity, concentration, and RNA/DNA integrity. Always run at least one negative control with the samples. To prepare a negative-control, replace the template RNA sample with RNAse/DNAse free water. # Dynamic range of test Under optimal PCR conditions HMPV detection kits have very high priming efficiencies of >95% and can detect less than 100 copies of target template. ### Notices and disclaimers This product is developed, designed and sold for research purposes only. It is not intended for human diagnostic or drug purposes or to be administered to humans unless clearly expressed for that purpose by the Food and Drug Administration in the USA or the appropriate regulatory authorities in the country of use. During the warranty period detection kits allow precise and reproducible data recovery combined with excellent sensitivity. For data obtained by violation to the general GLP guidelines and the manufacturer's recommendations the right to claim under guarantee is expired. PCR is a proprietary technology covered by several US and foreign patents. These patents are owned by Roche Molecular Systems Inc. and have been sub-licensed by PE Corporation in certain fields. Depending on your specific application you may need a license from Roche or PE to practice PCR. Additional information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at Roche Molecular Systems, 1145 Atlantic Avenue, Alameda, CA 94501 or Applied Biosystems business group of the Applera Corporation, 850 Lincoln Centre Drive, Foster City, CA 94404. In addition, the 5' nuclease assay and other homogeneous amplification methods used in connection with the PCR process may be covered by U.S. Patents 5,210,015 and 5,487,972, owned by Roche Molecular Systems, Inc, and by U.S. Patent 5,538,848, owned by The Perkin-Elmer Corporation. ### **Trademarks** The PCR process is covered by US Patents 4,683,195, and 4,683,202 and foreign equivalents owned by Hoffmann-La Roche AG. BI, ABI PRISM® GeneAmp® and MicroAmp® are registered trademarks of the Applera Genomics (Applied Biosystems Corporation). BIOMEK® is a registered trademark of Beckman Instruments, Inc.; iCycler™ is a registered trademark of Bio-Rad Laboratories, Rotor-Gene is a trademark of Corbett Research. LightCycler™ is a registered trademark of the Idaho Technology Inc. GeneAmp®, TaqMan® and AmpliTaqGold® are registered trademarks of Roche Molecular Systems, Inc., The purchase of the reagents cannot be construed as an authorization or implicit license to practice PCR under any patents held by Hoffmann-LaRoche Inc. # Principles of the test #### **Real-time PCR** A HMPV specific primer and probe mix is provided and this can be detected through the FAM channel. The primer and probe mix provided exploits the so-called TaqMan® principle. During PCR amplification, forward and reverse primers hybridize to the HMPV cDNA. A fluorogenic probe is included in the same reaction mixture which consists of a DNA probe labeled with a 5'-dye and a 3'-quencher. During PCR amplification, the probe is cleaved and the reporter dye and quencher are separated. The resulting increase in fluorescence can be detected on a range of real-time PCR platforms. #### One Step vs. Two step real-time PCR When detecting/quantifying the presence of a target with an RNA genome recommend the use of a one step qRT-PCR protocol. One step qRT-PCR combines the reverse transcription and real-time PCR reaction in a simple closed tube protocol. This saves significant bench time but also reduces errors. The sensitivity of a one step protocol is also greater than a two step because the entire biological sample is available to the PCR without dilution. This kit will also work well with a two step approach (PrecisionTM nanoScript2 reverse transcription kit and PrecisionPLUSTM Mastermix) if required but the use of oasigTM OneStep or PrecisionTM OneStepPLUS Mastermix is the preferred method. #### **Positive control** For copy number determination and as a positive control for the PCR set up, the kit contains a positive control template. This can be used to generate a standard curve of HMPV copy number / Cq value. Alternatively the positive control can be used at a single dilution where full quantitative analysis of the samples is not required. Each time the kit is used, at least one positive control reaction must be included in the run. A positive result indicates that the primers and probes for detecting the target HMPV gene worked properly in that particular experimental scenario. If a negative result is obtained the test results are invalid and must be repeated. Care should be taken to ensure that the positive control does not contaminate any other kit component which would lead to false-positive results. This can be achieved by handling this component in a Post PCR environment. Care should also be taken to avoid cross-contamination of other samples when adding the positive control to the run. This can be avoided by sealing all other samples and negative controls before pipetting the positive control into the positive control well. #### **Negative control** To validate any positive findings a negative control reaction should be included every time the kit is used. For this reaction the RNAse/DNAse free water should be used instead of template. A negative result indicates that the reagents have not become contaminated while setting up the run. # Carry-over prevention using UNG (unsuitable for onestep procedure and optional for two step procedure) Carry over contamination between PCR reactions can be prevented by including uracil-N-glycosylase (UNG) in the reaction mix. Some commercial mastermix preparations contain UNG or alternatively it can be added as a separate component. UNG can only prevent carry over from PCR reactions that include deoxyuridine triphosphate (dUTP) in the original PCR reaction. We recommend the application of 0.2U UNG per assay with a 15 minute incubation step at 37°C prior to amplification. The heat-labile UNG is then inactivated during the Taq polymerase activation step. ### **Reconstitution Protocol** To minimize the risk of contamination with foreign DNA, we recommend that all pipetting be performed in a PCR clean environment. Ideally this would be a designated PCR lab or PCR cabinet. Filter tips are recommended for all pipetting steps. - 1. Pulse-spin each tube in a centrifuge before opening. - This will ensure lyophilised primer and probe mix is in the base of the tube and is not spilt upon opening the tube. - 2. Reconstitute the kit components in the RNAse/DNAse free water supplied, according to the table below: To ensure complete resuspension, vortex each tube thoroughly. | Component - resuspend in water | Volume | |--------------------------------|--------| | Pre-PCR pack | | | HMPV primer/probe mix (BROWN) | 165 µl | | HMPV RT primer mix (GREEN) | 165 µl | 3. Reconstitute the positive control template in the template preparation buffer supplied, according to the table below: To ensure complete resuspension, vortex the tube thoroughly. | Component - resuspend in template preparation buffer | | |--|--------| | Post-PCR heat-sealed foil | | | HMPV Positive Control Template (RED) * | 500 µl | ^{*} This component contains high copy number template and is a VERY significant contamination risk. It must be opened and handled in a separate laboratory environment, away from the other components. # One Step RT-PCR detection protocol A one step approach combining the reverse transcription and amplification in a single closed tube is the preferred method. If, however, a two step approach is required see page 10. #### For optimum performance and sensitivity. All pipetting steps and experimental plate set up should be performed on ice. After the plate is poured proceed immediately to the One Step amplification protocol. Prolonged incubation of reaction mixes at room temperature can lead to PCR artifacts that reduce the sensitivity of detection. 1. For each RNA sample prepare a reaction mix according to the table below: Include sufficient reactions for positive and negative controls. | Component | Volume | | |---|--------|--| | oasig [™] OneStep or Precision [™] OneStepPLUS 2x qRT-PCR Mastermix | | | | HMPV primer/probe mix (BROWN) | 1 µl | | | RNAse/DNAse free water (WHITE) | 4 µl | | | Final Volume | 15 µl | | - 2. Pipette 15µl of this mix into each well according to your real-time PCR experimental plate set up. - 3. Pipette 5µl of RNA template into each well, according to your experimental plate set up. For negative control wells use 5µl of RNAse/DNAse free water. The final volume in each well is 20µl. 4. If a standard curve is included for quantitative analysis prepare a reaction mix according to the table below: | Component | Volume | |---|--------| | oasig [™] OneStep or Precision [™] OneStepPLUS 2x qRT-PCR Mastermix | 10 µl | | HMPV primer/probe mix (BROWN) | 1 µl | | RNAse/DNAse free water (WHITE) | 4 µl | | Final Volume | 15 µl | #### 5. Preparation of standard curve dilution series - 1) Pipette 90µl of template preparation buffer into 5 tubes and label 2-6 - 2) Pipette 10µl of Positive Control Template (RED) into tube 2 - 3) Vortex thoroughly - 4) Change pipette tip and pipette 10µl from tube 2 into tube 3 - 5) Vortex thoroughly Repeat steps 4 and 5 to complete the dilution series | Standard Curve | Copy Number | |-------------------------------|----------------------------| | Tube 1 Positive control (RED) | 2 x 10⁵ per µl | | Tube 2 | 2 x 10⁴ per µl | | Tube 3 | 2 x 10 ³ per µl | | Tube 4 | 2 x 10 ² per µl | | Tube 5 | 20 per µl | | Tube 6 | 2 per µl | # 6. Pipette 5µl of standard template into each well for the standard curve according to your plate set up The final volume in each well is 20µl. # One Step Amplification Protocol Amplification conditions using oasig[™] OneStep or Precision[™] OneStepPLUS 2x qRT-PCR Mastermix. | | Step | Time | Temp | |-------------|-----------------------|---------|-------| | | Reverse Transcription | 10 mins | 55 °C | | | Enzyme activation | 2 mins | 95 °C | | Cycling vE0 | Denaturation | 10 secs | 95 °C | | Cycling x50 | DATA COLLECTION * | 60 secs | 60 °C | ^{*} Fluorogenic data should be collected during this step through the FAM channel # Alternative two step reverse transcription/real-time PCR protocol #### **Reverse Transcription** 1. After reverse transcription, prepare a reaction mix according to the table below for each cDNA sample | Component | Volume | |----------------------------------|--------| | PrecisionPLUS™ 2x qPCR Mastermix | 10 µl | | HMPV Primer/Probe mix (BROWN) | 1 µl | | RNAse/DNAse free water (WHITE) | 4 µl | | Final Volume | 15 µl | - 2. Pipette 15µl of this mix into each well according to your real-time PCR experimental plate set up. - 3. Prepare sample cDNA templates for each of your samples by diluting the RT reaction mix 1:5 in RNAse/DNAse free water. - 4. Pipette 5µl of cDNA template into each well, according to your experimental plate setup. The final volume in each well is 20µl. For negative control wells use 5µl of RNAse/DNAse free water. # Alternative two step amplification protocol Amplification conditions using PrecisionPLUS[™] 2x qPCR Mastermix. | | Step | | Temp | |--------------------------------|-------------------|---------|-------| | UNG treatment (if required) ** | | 15 mins | 37 °C | | Enzyme activation | | 2 mins | 95 °C | | Cycling x50 | Denaturation | 10 secs | 95 °C | | | DATA COLLECTION * | 60 secs | 60 °C | ^{*} Fluorogenic data should be collected during this step through the FAM channel ^{**} Required if your Mastermix includes UNG to prevent PCR carryover contamination # Interpretation of Results | Target | Positive
control | Negative
control | Interpretation | |--------|---------------------|---------------------|--| | + | + | - | POSITIVE QUANTITATIVE RESULT calculate copy number | | - | + | - | NEGATIVE RESULT | | +/- | + | ≤ 35 | EXPERIMENT FAILED due to test contamination | | +/- | + | > 35 | * | | +/- | - | +/- | EXPERIMENT FAILED | Positive control template (**RED**) is expected to amplify between Cq 16 and 23. Failure to satisfy this quality control criterion is a strong indication that the experiment has been compromised *Where the test sample is positive and the negative control is positive with a Cq > 35, the sample must be reinterpreted based on the relative signal strength of the two results: #### SAMPLE POSITIVE ### **INCONCLUSIVE** If the sample amplifies > 5 Cq earlier than the negative control then the sample should be reinterpreted (via the table above) with the negative control verified as negative. If the sample amplifies < 5 Cq earlier than the negative control then the positive sample result is invalidated and the result should be determined inconclusive due to test contamination. The test for this smaple should be repeated.